Anti-Tumour Treatment

Diagnosis and management of gastrointestinal neuroendocrine tumors: An evidence-based Canadian consensus

Simron Singh, Sylvia L. Asa, Chris Dey, Hagen Kennecke, David Liday, Calvin Law, Timothy Asmis, David Chan, Shereen Ezzat, Rachel Goodwin, Ozgur Mete, Janice Pasieka, Juan Rivera, Ralph Wong, Eva Segelov, Daniel Rayson

Keywords:
- Neuroendocrine tumors
- Gastrointestinal neoplasms
- Carcinoid tumor
- Malignant carcinoid syndrome
- Disease management
- Canadian consensus

Introduction

Neuroendocrine cancers have more than doubled in incidence in the last 15 years in Canada [1] and are the second most prevalent cancer of the gastrointestinal (GI) tract. Most neuroendocrine tumors (NETs) present as, or progress to, metastatic disease with an average survival of ~3 years [1]. This is in contrast to the commonly perceived notion of NETs as slow-growing malignancies that often do not need treatment. A recent study showed that NETs
also placed a considerable burden on patient lives (Singh et al. J Gastroint Oncol, in press). Neuroendocrine tumors (NETs) are a heterogeneous group of neoplasias arising from a variety of anatomic sites, with approximately 50% being of GI origin [1–6]. They are characterized by generally indolent but highly variable clinical behavior with tumor morphology, mitotic count and Ki-67 index being key parameters in the evaluation of each case. Although most GI-NETs are clinically non-secretory some patients present with, or develop, secretory syndromes resulting in complex symptomaticities [7]. The heterogeneity of NETs, as well as the variable clinical manifestations and disease course require multidisciplinary treatment for optimal outcomes. The complexity of care dictates the need for evidence-based guidelines integrating the most up to date clinical data.

Since the publication of the 2010 Canadian GI-NET consensus statement [8] and other international guidelines [9–11], there have been numerous advances in the diagnosis and management of GI-NETs. These include improved imaging modalities and large randomized phase III trials of systemic therapies [12–16]. We sought to update the GI-NETs Canadian consensus statement by incorporating the latest data to develop a comprehensive and practical evidence-based guide for the diagnosis and management of this disease. While this consensus statement discusses the presentation and treatment of common clinical symptoms of excessive hormone secretion, it is not exhaustive. A separate guideline was developed for pancreatic NETs [17] due to the unique biology and increasing data specific to the disease. Herein, we discuss only non-pancreatic NETs of the GI tract.

Methods

Published and presented literature was searched for original clinical studies and meta-analyses addressing the diagnosis and management of GI-NETs using the MEDLINE database (since 2005) and relevant conference databases (since 2013; Fig. 1). Search queries included the following terms: (neuroendocrine OR carcinoid) AND GI [defined as gastrointestinal or pancreatic small bowel OR small intestine* OR large bowel OR large intestine* OR appendix* OR rect* OR hepatic OR liver OR gastrointestinal* OR gastric OR stomach OR midgut OR foregut] and supplemented with a bibliographic review of recent reviews and guidelines (Fig. 1). Records were vetted to identify studies on imaging, diagnosis or treatment of GI-NETs.

Search findings were presented and discussed by a multidisciplinary panel of experts, including medical oncologists, surgeons, nuclear medicine physicians, interventional radiologists, endocrinologists, and pathologists at a consensus meeting held on November 5, 2015. A total of 8 lead experts prepared data summaries and, based on the best available data, minimal consensus statements were debated and final versions were endorsed through a consensus vote. The NCCN-based consensus process (Table 1) was used to assign categories of consensus for the recommendations provided, reflective of both the level of data and level of consensus. All consensus statements are Category 2A (C2A) unless otherwise indicated (Table 2).

Epidemiology

GI-NETs are uncommon, but increasing in incidence in Canada and globally [1,18,19]. Data from the Ontario Cancer Registry indicates that the incidence of NETs among adult patients in Ontario, Canada increased from 2.48 to 5.86 per 100,000 person per year from 1994 to 2009, with metastatic disease documented in 20.8% at presentation and developing subsequent to diagnosis in an additional 38% [1]. Incidence was observed to increase significantly after the age of 50, peaking in those ≥71 years of age.

Diagnosis and classification

Diagnosis, classification and staging of GI-NETs involve assessment of clinical symptoms, hormone levels, expert histological review and specific imaging techniques [2,20,21].

Clinical assessment

NET symptoms may have secretory and/or non-secretory origins. Because serotonin produced by midgut GI-NETs is inactivated in the liver, the carcinoid syndrome usually occurs when serotonin secretion bypasses hepatic metabolism and reaches the systemic circulation [20,22,23], usually in the context of hepatic metastases, and may result in diffuse flushing, secretory diarrhea, and dyspnea. Other less frequent secretory syndromes can arise due to gastrinomas (diarrhea with or without peptic ulcerations), ghrelinomas (anorexia, weight loss), VIPomas (watery diarrhea, hypokalemia, acidosis), somatostatinomas (diabetes, diarrhea, steatorrhea, choledolithiasis), and neurotensinomas (edema, hypotension, cyanosis and flushing), all of which can originate from extrapancreatic locations. For non-secretory small intestinal NETs, symptomatology may arise from local–regional disease or hepatic bulk. Local–regional disease can result in episodic abdominal pain with or without obstructive symptoms due to mesenteric fibrosis or intestinal ischemia, constitutional symptoms due to lymphadenopathy and/or ascites, as well as symptomatic anemia or nutritional deficiencies due to intestinal blood loss or malabsorption. Bulky hepatic metastases can lead to progressive nausea, early satiety, pain and/or impaired liver function.

All patients should have a comprehensive functional inquiry at initial diagnosis and throughout the disease course, aiming to elucidate symptoms potentially related to a secretory syndrome and/or bulky disease. Biochemical work-up of newly-diagnosed patients should follow clinical symptomatology with appropriate laboratory investigations to either confirm or rule out peptide hypersecretion. A 24-h urinary 5-HIAA analysis should be performed for all patients with a small intestinal primary NET, as well as those with symptoms suggestive of the carcinoid syndrome (Table 2). Chronic elevations of circulating serotonin can lead to carcinoid heart disease which is characterized primarily by right side valvular dysfunction, potentially leading to heart failure and death [7,22,24,25]. An echocardiogram is therefore recommended at diagnosis and annually for patients with biochemical evidence of serotonin excess with referral to cardiology and/or cardiac surgery as appropriate.

Pathology

Histology is always necessary to establish a NET diagnosis and core biopsies are preferred to fine needle aspiration (FNA) to optimize available material for analysis. Once histology is suggestive, confirmation of suspected GI-NETs begins with immunohistochemical (IHC) staining for low molecular weight keratins, and chromogranin, with synaptophysin staining also being supportive of the diagnosis (Fig. 2). Assessment of Ki-67 index should be performed in all cases, and within regions of highest mitotic density, given intratumoral heterogeneity and the importance of reporting disease with high proliferative capacity [26]. Automated Ki-67 labeling index (LI) methodologies are preferred over manual counts (>1000 cells in hot spots) as they are more accurate and reproducible; however, manual counting of nuclear labeling hot spots on a printed image remains an option [27–29].

In cases where the primary NET site is unknown or the tumor is keratin negative, further IHC for common transcription factors (TTF-1, CDX-2, PDX-1, or ISL-1) and PSAP is recommended to
further focus the diagnosis and site of origin (Fig. 2) [30–34]. If the tumor is TTF-1 positive, IHC for calcitonin and CEA will distinguish thyroid MTC from lung NETs. If CDX-2 is positive, staining for serotonin indicates an intestinal enterochromaffin (EC) cell NET, which may also be positive for VMAT-1 and VMAT-2. IHC for gastrin (G cells), VMAT-2 (histamine-producing ECL cells) and other gastric/duodenal hormones may help to further clarify gastroduodenal NET origin. Likely pancreatic origin is suggested by ISL-1/PDX-1 positivity which is accompanied by positive IHC for pancreatic hormones. Positive PSAP staining suggests a rectal NET, and IHC for GLP-1/PP/PYY will distinguish L-cell from non-L-cell rectal NETs [35]. For tumors that are transcription factor and keratin-negative, a positive stain for tyrosine hydroxylase indicates a paraganglioma [36].

Once the primary site is known, the 2010 World Health Organization (WHO) Classification System for Ki-67 labeling index, mitotic count and differentiation should be applied to ensure consistency in nomenclature (G1–G3, NET, or NEC) [37], along with the 7th edition of AJCC Staging System to ensure staging consistency [38]. Use of the College of American Pathologist’s minimum data set for NETs reporting is recommended for all resection specimens (Table 2) [39] and secondary review of specimens by a subspecialty expert should be considered to optimize reporting consistency.
Table 2
Minimal consensus statements for the diagnosis and management of GI-NETs.

<table>
<thead>
<tr>
<th>Indication</th>
<th>Minimal consensus statements (category of consensus)*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diagnosis and classification</td>
<td></td>
</tr>
</tbody>
</table>
| Clinical assessment | • NET symptoms may have secretory and/or non-secretory origins
• All patients should have a comprehensive functional inquiry at initial diagnosis throughout the disease course and aiming to elucidate symptoms potentially related to a secretory syndrome and/or bulky disease
• Biomedical work-up of newly-diagnosed patients should follow clinical symptomatology with appropriate laboratory investigations to either confirm or rule out peptide hypersecretion
• A 24-h urinary 5-HIAA analysis should be performed for all patients with a small intestinal primary NET and those with symptoms suggestive of carcinoid syndrome |
| For secretory disease | The carcinoid syndrome typically arises in the context of hepatic metastases
• Usually occurs when serotonin secretion bypasses hepatic metabolism and reaches the systemic circulation
• May result in diffuse flushing, secretory diarrhea, and dyspnea
• Other less frequent secretory syndromes can originate from extrapancreatic locations and arise due to
• Gastrinomas (diarrhea with or without peptic ulcerations)
• Glucagonomas (anorexia, weight loss)
• VIPomas (watery diarrhea, hypokalemia, acidaemia)
• Somatostatinomas (diabetes, diarrhea, steatorrhea, cholelithiasis)
• Neurotensinomas (edema, hypoproteinemia, cyanosis and flushing)
An echocardiogram is recommended at diagnosis and annually for patients with biochemical evidence of serotonin excess, with referral to cardiology and/or cardiac surgery as appropriate |
| For non-secretory small intestinal NETs | For non-secretory small intestinal NETs, symptomatology may arise from local-regional disease or hepatic bulk
Local-regional disease can result in episodic abdominal pain with or without
• Obstructive symptoms due to mesenteric fibrosis or intestinal ischemia
• Constitutional symptoms due to lymphadenopathy and/or ascites
• Symptomatic anemia or nutritional deficiencies due to intestinal blood loss or malabsorption
Bilious hepatic metastases can lead to progressive nausea, early satiety, pain and/or impaired liver function |
| Pathology | • Histology is always necessary to establish a NET diagnosis and core biopsies are preferred to fine needle aspiration (FNA) to optimize available material for analysis
• Use of the College of American Pathologists' minimum data set for NETs reporting is recommended for all resection specimens and secondary review of specimens by a subspecialty expert should be considered to optimize reporting consistency
• Re-biopsy is recommended for patients with newly diagnosed metastatic disease in the context of a previously resected primary tumor at time of disease recurrence |
| All suspected GI-NETs | Confirmation of suspected GI-NETs begins with immunohistochemical (IHC) staining for chromogranin, low molecular weight keratins, and Ki-67 index: synaptophysin staining may also be performed
Ki-67 index assessment
• Should be performed in regions of highest mitotic density due to intratumoral heterogeneity and the importance of reporting disease with high proliferative capacity
• Automated Ki-67 labeling index (LI) methodologies are preferred over manual counts (x1000 cells in hot spots) as they are more accurate and reproducible: however, manual counting of nuclear labeling hot spots on a printed image remains an option
The 2010 WHO Classification System for Ki-67 labeling index, mitotic count and differentiation should be applied to ensure consistency in nomenclature (GI-J2, NET, or NEC)
Use of the 7th edition of AJCC Staging System should be considered to ensure staging consistency
Immunohistochemistry for common transcription factors (TTF-1, CDX-2, PDG-1, or SS1-1) and PSAP is recommended to further focus the diagnosis and site of origin:
• If TTF-1 positive, IHC for calcitonin and CEA will distinguish thyroid MTC from lung NETs
• If CDX-2 positive, staining for serotonin indicates an intestinal enterochromaffin (EC) cell NET, which may also be positive for VMAT-1 and VMAT-2
Primary site unknown or keratin negative
IHC for gastrin (C-cells), VMAT-2 (histamine-producing ECL cells) and other gastrin/duodenal hormones may help to further clarify gastroduodenal NET origin
• SS1-1/PDX-1 positivity suggests pancreatic origin, which is accompanied by positive IHC for pancreatic hormones
• Positive PSAP staining suggests a rectal NET, and IHC for GLP-1/PP/PYY will distinguish L-cell from non-L-cell rectal NETs
• If transcription factor and keratin negative, a positive stain for tyrosine hydroxylase indicates a paraganglioma |
| Imaging | Both cross-sectional and functional imaging are important in the diagnosis and ongoing management of patients with GI-NETs
For liver assessment, multiphasic CT or contrast enhanced MRI are options, with the latter preferred for those patients being considered for hepatic ablative or debulking therapies
68Ga somatostatin receptor PET/CT is the preferred functional imaging modality, if available
111In pentetreotide SRS with SPECT/CT continues to be a reasonable functional imaging option
Other imaging modalities that may be helpful in determining the origin of the primary tumor site include endoscopy, endoscopic ultrasoundography (EUS) and CT or MR enterography/enteroclysis |
| All GI-NETs | (continued on next page) |
Table 2 (continued)

<table>
<thead>
<tr>
<th>Indication</th>
<th>Minimal consensus statements (category of consensus*)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Disease management</td>
<td>Treatment individualization, with input from a dedicated multi-disciplinary team and consideration of all options at different points along the disease trajectory, is important to optimize outcomes. Consideration of disease extent and location, tumor grade, pace of disease progression, performance status, symptomatology, comorbidities and patient preference should all be considered and re-evaluated at each treatment decision point.</td>
</tr>
<tr>
<td>Cytoreductive therapy for early disease</td>
<td>Patients with secreory disease should be evaluated for possible pre-treatment with an SSA to prevent potential carcinoid crises.</td>
</tr>
<tr>
<td>Disease subtype defined by clinical and pathologic features should be considered when developing a surgical plan.</td>
<td></td>
</tr>
<tr>
<td>Gastric tumor</td>
<td>Whenever possible, apply minimally invasive techniques. Preserve gastric volume and function.</td>
</tr>
<tr>
<td>Small bowel tumor</td>
<td>Evaluate for multifocality. Goal of surgery should be complete resection of the primary tumor(s) and the associated lymphatic drainage field.</td>
</tr>
<tr>
<td>Appendiceal tumor</td>
<td>Right hemicolectomy for: Appendiceal NETs > 2 cm. Appendiceal NETs < 2 cm with adverse prognostic factors.</td>
</tr>
<tr>
<td>Rectal tumor</td>
<td>Low risk tumors should be treated with minimally invasive techniques that aim to preserve anal sphincter and function. Higher risk tumors should be treated with total mesorectal excision.</td>
</tr>
<tr>
<td>Residual disease or positive margins post primary resection</td>
<td>Definitive resection (including consideration of gastrointestinal function) should be considered when technically feasible.</td>
</tr>
<tr>
<td>Cytoreductive therapy for metastatic or unresectable disease</td>
<td>Patients with secretory disease should be evaluated for possible pre-treatment with an SSA to prevent potential carcinoid crises.</td>
</tr>
<tr>
<td>Synchronous primary and metastatic disease</td>
<td>Primary and regional nodal resection should be considered when feasible, to prevent future gastrointestinal complications related to mesenteric fibrosis and ischemia. Resection of liver metastases with the goal of preserving liver parenchyma and both left and right inflow and outflow vascular patency, where possible, may be an option for appropriately selected patients. Image-guided ablation is an option, either alone for limited disease (tumors ideally < 3 cm), or in combination with surgical resection.</td>
</tr>
<tr>
<td>Liver metastases</td>
<td>Hepatic-arterial therapies are treatment options. Biologic therapy, chemoembolization, radioembolization.</td>
</tr>
<tr>
<td>Hepatic disease when cytoreductive surgical/ablative procedures are not indicated</td>
<td>Surgical strategies to reduce peritoneal disease bulk may be warranted, while resection of peritoneal disease with hepatic metastasy may be an option for select patients.</td>
</tr>
<tr>
<td>Peritoneal metastases</td>
<td>Cytoreduction should be carefully considered for selected patients after appropriate multidisciplinary consultation and where there is need for symptom control warrants an attempt at surgical debulking.</td>
</tr>
<tr>
<td>Abdominal disease (liver, peritoneal) in the setting of extra-abdominal metastases (bone, lung, etc.)</td>
<td>Potential cholecystectomy should be considered as part of any abdominal surgical procedure.</td>
</tr>
<tr>
<td>Carcinoids of Grade 1 primary NET, hepatic only metastases and no disease progression over a minimum 12-month period</td>
<td>Liver transplantation may be an option.</td>
</tr>
<tr>
<td>Systemic therapy for metastatic or unresectable disease</td>
<td>In principle, secretory and non-secretory NETs should be treated similarly, while multi-disciplinary teams should consider patient and disease characteristics, therapeutic ratios, treatment availability and cost when developing individualized treatment plans.</td>
</tr>
<tr>
<td>Non-progressive disease</td>
<td>For GI-NETs without evidence of carcinoid syndrome, initiation of SSA treatment or expectant management are both appropriate therapeutic options.</td>
</tr>
</tbody>
</table>
Abbreviations: GI-NET, gastrointestinal neuroendocrine tumor; NET, neuroendocrine tumor; SSA, somatostatin analogue; SSR, somatostatin receptor; VIP, vasoactive intestinal polypeptide.

Categories (C) of consensus are defined as: C1 (uniform consensus based on high-level evidence that the recommendation is appropriate); C2A (uniform consensus based on lower-level evidence, including clinical experience, that the recommendation is appropriate); C2B (non-uniform consensus, but no major disagreement, based on lower-level evidence, including clinical experience, that the recommendation is appropriate); C3 (major disagreement that the recommendation is appropriate). All recommendations in this statement are category C2A unless otherwise indicated.

Symptom control
- Supportive treatments for carcinoid syndrome-related diarrhea may include bile salt sequestrants such as Questran, anti-diarrheal agents, and pancreatic enzyme replacement.
- Management of symptoms due to hepatic bulk or loco-regional disease may include pain control with narcotics, anti-nauseants, prokinetics (e.g., domperidone, maaseran), proton pump inhibitors or H2 blockers and corticosteroids.
- Psychosocial support and expert nursing care should be provided at all times throughout the disease course and referral to reputable informational websites and/or patient support groups should be encouraged.

Systemic therapy

Primary symptoms
- Initial SSA therapy
 - Octreotide LAR 20–30 mg i.m., q4w
 - Lanreotide 120 mg deep s.c., q4w for immediate symptom control
 - Short-acting octreotide 150-500 s.c. TID should be initiated and continued for two weeks after the first dose of long-acting SSA
 - Telotristat etiprate – awaiting approval (C1)

Symptoms refractory to SSAs
- Interferon alpha 3–5 million units s.c., three times per week, with careful attention to toxicity management
- SSA dose escalation: octreotide LAR up to 60 mg q2-4w or lanreotide up to 180 mg q4w

Loco-regional therapy
- Patients who remain symptomatic in spite of SSA therapy may be considered for cytoreductive surgery and hepatic directed therapies following the same principles outlined in the Disease Management section.

Metastatic neuroendocrine disease with symptomatic boney and brain metastasis
- External beam radiotherapy is an option

Monitoring and follow-up
- Regular clinical, biochemical and radiologic follow-up should be performed throughout the disease course, although optimal timing has not been defined.
- Ongoing surveillance for patients undergoing expectant management or active treatment should include cross-sectional anatomical imaging with optimal imaging protocols.

Curative-intent surgical therapy
- Regular surveillance anatomical and functional imaging, depending on which techniques were deemed useful at baseline.
- Assessment intervals should be individualized based on patient and disease-related factors, tumor characteristics, therapy, and goals of care.
- For young patients (< age 40) with hepatic-only disease, MRI may be considered to minimize cumulative radiation exposure.
- Annual echocardiography is recommended.

Patients with carcinoid syndrome and risk of carcinoid heart disease
- Regular surveillance anatomical and functional imaging, depending on which techniques were deemed useful at baseline.
- Assessment intervals should be individualized based on patient and disease-related factors, tumor characteristics, therapy, and goals of care.
- For young patients (< age 40) with hepatic-only disease, MRI may be considered to minimize cumulative radiation exposure.
- Annual echocardiography is recommended.

Indication
- Progressive disease – treatment naive
- Progressive disease on SSA therapy
- SSR-positive disease via In-111 Octreotide or Ga-68 DOTA-TATE imaging (for PRRT)

Minimal consensus statements (category of consensus)
- Single agent SSA (octreotide LAR 30 mg, i.m. q4w or lanreotide autogel 120 mg, s.c. q4w; C1)
- Single agent use of everolimus (10 mg/day; C1)
- Everolimus in combination with SSAs is an additional option
- Peptide receptor radionuclide therapy (PRRT)
 - 111In DOTA-TATE should be considered for mid-gut NETs (C1)
 - 177Lu DOTA-TATE is an option for other GI-NETs
 - If 111In DOTA-TATE is unavailable, 177Lu-DOTA-octreotide is an option

Patients receiving PRRT, particularly 177Lu-DOTA-octreotide, are at risk of kidney toxicity and amino-acid protection to reduce toxicity is required.
Studies have described significant and potentially clinically relevant discordance in pathological characteristics between primary tumors and metachronous metastases [40,41]. As such, re-biopsy is recommended for patients with newly diagnosed metastatic disease in the context of a previously resected primary tumor at time of disease recurrence.

Grade 3 neuroendocrine carcinomas (NECs) can include both well and poorly differentiated disease [42]. Well-differentiated NECs typically have a Ki-67 index ranging between 20% and 55%, whereas poorly differentiated large cell or small cell NECs usually have a Ki-67 index >55% [42–44]. This distinction is of clinical significance, since well-differentiated Grade 3 NECs are not as biologically or clinically aggressive as poorly differentiated NECs and are generally unresponsive to platinum-based chemotherapy [45,46]. Prospective randomized trials are underway to evaluate optimal therapy for G3 neuroendocrine neoplasms.

Imaging

Both cross-sectional and functional imaging are important in the diagnosis and ongoing management of patients with GI-NETs [47]. For liver assessment, multiphasic computed tomography (CT) or contrast enhanced magnetic resonance imaging (MRI) are options, with the latter preferred for those patients being considered for hepatic ablative or debulking therapies given its greater sensitivity and specificity [48,49]. In pentetreotide (OctreoScan®) imaging continues to be an important diagnostic test and serves to identify patients who may be candidates for octreotide-based peptide receptor radiotherapy (PRRT) [47]. A recent meta-analysis assessing the diagnostic performance of 68Ga somatostatin receptor positron emission tomography (PET) and PET/CT has demonstrated high sensitivity (93%; 95% CI: 91–95%) and specificity (91%; 95% CI: 82–97%) for NETs, with evolving evidence that it may also aid in guiding therapy and have prognostic value [50]. 68Ga somatostatin receptor PET/CT is the preferred functional imaging modality but access is limited in North America, therefore 111In pentetreotide SRS with single-photon emission computerized tomography (SPECT)/CT continues to be a reasonable option as both a diagnostic and clinical management tool [51,52]. Other imaging modalities that may be helpful in determining the origin of the primary tumor site include endoscopy, endoscopic ultrasonography (EUS) and CT or magnetic resonance (MR) enterography/enteroclysis [47,53–56].

Disease management

Therapeutic interventions to be considered include surgical, loco-regional, pharmacological and nuclear systemic therapies. Treatment individualization, with input from a dedicated multidisciplinary team and consideration of all options at different points along the disease trajectory, is important to optimize outcomes. Consideration of disease extent and location, tumor grade, pace of disease progression, performance status, symptomatology, comorbidities and patient preference should all be considered and re-evaluated at each treatment decision point.

Cytoreductive therapies

Prior to any loco-regional therapy, patients with secretory disease should be evaluated for possible pre-treatment with a somatostatin analogue (SSA) to prevent potential carcinoid crises.

Early disease

For primary gastric NETs, disease subtype defined by clinical and pathologic features should be considered when developing a surgical plan [10]. Whenever possible, minimally invasive techniques that preserve gastric volume and function should be applied [57]. Small bowel NETs should be evaluated for multifocality and
<table>
<thead>
<tr>
<th>Trial</th>
<th>Eligibility criteria</th>
<th>Intervention</th>
<th>n</th>
<th>Median PFS (months)</th>
<th>>10% Difference any grade AEa (%)</th>
<th>>5% Difference grade 3/4 AEsb (%)</th>
<th>AEs (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PROMID (Rinke, 2009)</td>
<td>Treatment-naive, midgut NETs, secretory/non-secretory</td>
<td>Octreotide LAR 30 mg i.m., q4w</td>
<td>42</td>
<td>14.3 (TTP)</td>
<td>HR = 0.34</td>
<td>95% CI: 0.20–0.59</td>
<td>p = 0.000072</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Placebo i.m., q4w</td>
<td>43</td>
<td>6.0 (TTP)</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>CLARINET (Caplin, 2014)</td>
<td>Previous treatment permitted, enteropancreatic NETs, non-secretory.† SSR+</td>
<td>Lanreotide autogel 120 mg s.c., q4w</td>
<td>101</td>
<td>NR</td>
<td>HR = 0.47</td>
<td>95% CI: 0.30–0.73</td>
<td>p < 0.001</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Placebo s.c., q4w</td>
<td>103</td>
<td>18.0</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>RADIANT-2 (Pavel, 2011)</td>
<td>Previous treatment permitted, multiple disease sites.‡, low or intermediate grade, history of secretory symptoms</td>
<td>Everolimus 10 mg/day p.o. + Octreotide LAR 30 mg i.m., q4w</td>
<td>216</td>
<td>16.4</td>
<td>HR = 0.77</td>
<td>95% CI: 0.59–1.00</td>
<td>p = 0.026†</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Placebo + Octreotide LAR 30 mg i.m., q4w</td>
<td>213</td>
<td>11.3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RADIANT-4 (Yao, 2016)</td>
<td>Advanced (prior treatment & treatment-naive) lung or GI NETs, non-secretory</td>
<td>Everolimus 10 mg/day p.o.</td>
<td>205</td>
<td>11.0‡</td>
<td>HR = 0.48</td>
<td>95% CI: 0.35–0.67</td>
<td>p < 0.0001 §</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Placebo</td>
<td>97</td>
<td>3.9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NETTER-1 (Strosberg, 2015)</td>
<td>NETs progressing on Octreotide LAR (30 mg), midgut NETs, secretory/non-secretory, SSR+</td>
<td>7.4 GBq¹⁷⁷Lu-Dotatate, q8w + Octreotide LAR 30 mg i.m., q4w</td>
<td>116</td>
<td>NR</td>
<td>HR = 0.209</td>
<td>95% CI: 0.129–0.384</td>
<td>p < 0.0001</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Octreotide LAR 60 mg i.m., q4w</td>
<td>113</td>
<td>8.4</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Abbreviations: AE, adverse event; GI, gastrointestinal; NA, not available; NET, neuroendocrine tumor; NR, not reached; PFS, progression-free survival; SSR+, somatostatin receptor-positive; TTP, time to progression.

a All reported adverse events of all grades with at least 10% difference in frequency; experimental versus control arm, respectively.

b All reported grade 3 or 4 adverse events with at least 5% difference in frequency; experimental versus control arm, respectively.

† Includes gastrinomas that had been adequately controlled by means of proton-pump inhibitors for 4 months or longer.

‡ Small intestine, lung, colon, pancreas, liver, other.

§ Analysis by central review; adjusted for two interim analyses, the pre-specified boundary at final analysis was p < 0.0246; Investigator review: Median PFS 12.0 vs 8.6, HR 0.78 (95% CI: 0.62–0.98, p = 0.018; everolimus + octreotide LAR vs placebo + octreotide LAR, respectively).

||
the goal of surgery should be complete resection of the primary tumor(s) and the associated lymphatic drainage field [10,58]. For appendiceal NETs, a right hemicolectomy is recommended for tumors ≥ 2 cm and should be considered for smaller tumors with adverse prognostic factors including (i) disease at base of appendix or positive luminal margin, (ii) positive node in mesoappendix, (iii) lymphovascular invasion of mesoappendix, and (iv) ENETs grade 2–3 disease [10,58]. Low-risk rectal NETs, characterized by tumor size <1 cm, with well-differentiated morphology, a low Ki-67 index and no evidence of nodal metastases on MRI should be treated with minimally invasive techniques that aim to preserve anal sphincter and function, while higher risk tumors should be treated with total mesorectal excision [59]. When technically feasible, definitive resection (including consideration of gastrointestinal function) should be considered for residual disease or positive margins following incomplete primary resection.

Metastatic or unresectable disease

Surgery. Surgery plays an integral role in the management of GI-NETs even in the presence of metastatic disease [60–62]. Retrospective analyses have observed that liver-directed cytoreductive surgery can be associated with long survival times (median 125 months; overall 5- and 10-year survival of 74%, and 51%, respectively) [63], with the greatest benefit seen among those with low-volume or symptomatic high-volume disease [64]. Resection of liver metastases with the goal of preserving liver parenchyma and both left and right inflow and outflow vascular patency, where possible, may be an option for appropriately selected patients (Table 2). For synchronous primary and metastatic disease, primary and regional nodal resection should be considered when feasible, to prevent future gastrointestinal complications related to mesenteric fibrosis and ischemia. Surgical strategies to reduce periportal disease bulk may be warranted, while synchronous resection of periportal disease with hepatic metastectomy is an option for select patients (Table 2). Cytoreduction of abdominal disease (liver, peritoneal) in the setting of extra-abdominal metastases (bone, lung, etc.) should be carefully considered for selected patients after appropriate multidisciplinary consultation and where the need for symptom control warrants an attempt at surgical debulking (Table 2).

In cases where long term SSA therapy (risk of cholelithiasis) and/or liver-directed therapy (risk of gallbladder ischemia) are anticipated, prophylactic cholecystectomy should be considered as part of any abdominal surgical procedure. Finally, in cases of a resected Grade 1 primary GI-NET with hepatic only metastases and no disease progression over a minimum 12-month period, liver transplantation may be an option [21].

Ablative therapy. Liver-directed ablation either alone or in combination with surgical resection can be considered for appropriately selected patients [63,65]. Image-guided ablation is an option, either alone for limited disease (tumors ideally <3 cm), or in combination with surgical resection (Table 2).

Hepatic artery embolization. Hepatic-arterial therapy with bland or chemoembolization techniques is a well-established therapy when disease extent and/or location precludes surgical intervention or where secretory symptoms are difficult to control with medical therapy alone [66–68]. Yttrium-90 (90Y) radioembolization employing glass or resin beads is a new option for hepatic-directed therapy. A prospective, multicenter phase II study evaluated the safety and dose reproducibility of 90Y (glass) radioembolization in the treatment of patients with diverse liver metastases, including a relatively large cohort of patients with NETs [69] and a recent meta-analysis demonstrated an objective response rate of 50% and disease control rate of 86% [70]. Currently available data does not suggest an optimal embolization technique but all options could be considered for disease and/or symptom control (Table 2).

Systemic therapy for metastatic or unresectable disease

In principle, secretory and non-secretory NETs should be treated similarly, while multi-disciplinary teams should consider patient and disease characteristics, therapeutic ratios, treatment availability and cost when developing individualized treatment plans (Table 2). Progression free survival (PFS) has been considered an appropriate endpoint in clinical trials of NET therapies due to the extended survival periods, crossover design of recent studies and confounding effects of multiple therapies that prevent overall survival (OS) determination [71,72]. A recent meta-analysis has confirmed the use of PFS as a surrogate for OS [72,73]. Therefore, we consider PFS the primary endpoint of assessment when reviewing and recommending treatment options.

Somatostatin analogues (SSAs)

Recent data have confirmed the anti-proliferative activity of SSAs in well and moderately differentiated NETs [13,74]. The phase III PROMID trial compared octreotide LAR (30 mg) to placebo in treatment-naïve patients with midgut NETs. Time to tumor progression favored octreotide LAR with a net benefit of 8.3 months (14.3 vs 6.0 months; HR = 0.34, 95% CI: 0.20–0.59; p = 0.000072; Table 3) [74] with no difference in OS (84.7 vs 83.7 months; HR = 0.83, 95% CI: 0.47–1.46; p = 0.51) [75]. The phase III CLARINET trial compared lanreotide autogel (120 mg) to placebo in primarily treatment-naïve patients with enteropancreatic NETs and Ki-67 index <10% [13]. Median PFS (not yet reached vs 18.0 months, HR = 0.47, 95% CI: 0.30–0.73; p < 0.001) was significantly improved in the lanreotide arm (Table 3), with estimated PFS rates at 24 months of 65.1% and 33.0% in the lanreotide and placebo groups respectively [13]. Adverse event (AE) profiles were favorable in both trials and consistent with previously reported SSA AEs (Table 3).

Targeted therapies and biologics

Everolimus is an oral mammalian target of rapamycin (mTOR)-inhibitor which has been evaluated in multiple phase III trials of patients with advanced NETs of both GI and non-GI origin. Most recently, RADIANT-4 compared everolimus (10 mg/day) to placebo in a patient population with non-secretory lung or GI-NETs with prior SSA (53%) or chemotherapy (26%) permitted. Everolimus resulted in a net PFS benefit of 7.1 months compared to placebo (11.0 vs 3.9 months, HR = 0.48, 95% CI: 0.35–0.67; p < 0.0001; Table 3) [16]. The earlier RADIANT-2 trial assessed the addition of everolimus (10 mg/day) versus placebo to octreotide LAR (30 mg) in heavily pre-treated patients (prior SSA, 78%; biologics or immunotherapy, 38% or chemotherapy 46%) with metastatic, secretory, non-pancreatic NETs [14]. Everolimus resulted in a non-significant net PFS improvement of 5.1 months compared to placebo (16.4 vs 11.3 months, p = 0.026; Table 3). The AEs associated with everolimus alone or in combination with octreotide were consistent with the known safety profiles of these drugs (Table 3).

In contrast to NETs of pancreatic origin, there is no data available supporting the use of sunitinib in GI-NETs of non-pancreatic origin. A phase II trial of pazopanib for GI-NETs demonstrated clinical activity but also substantial toxicity [76] and the addition of interferon or bevacizumab to SSAs (phase III) did not improve PFS outcomes and added toxicity compared to SSAs alone [77].

For non-progressive small bowel and other GI-NETs without evidence of carcinoid syndrome, initiation of SSAs or expectant management are both appropriate initial therapeutic options (Tables 2 and 3) [13,74]. For treatment-naïve progressive disease,
<table>
<thead>
<tr>
<th>Secretry symptoms</th>
<th>Non-secretary symptoms</th>
<th>Loco-regional disease (abdominal pain and/or obstructive symptoms due to mesenteric fibrosis or intestinal ischemia, lymphadenopathy and/or ascites)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carcinoid syndrome (diffuse flushing, secretory diarrhea)</td>
<td>Hepatic bulk (nausea, early satiety, pain)</td>
<td>Primary treatment
• Octreotide LAR 20–30 mg i.m., q4w
• Lanreotide 120 mg deep s.c., q4w</td>
</tr>
<tr>
<td>Primary treatment
• Octreotide LAR 20–30 mg i.m., q4w
• Lanreotide 120 mg deep s.c., q4w</td>
<td>Immediate symptom control
• Short-acting octreotide 150–500 s.c., TID, initiated and continued for two weeks after the first dose of long-acting SSA</td>
<td></td>
</tr>
<tr>
<td>Systemic therapy</td>
<td></td>
<td>Definitive resection with consideration of residual gastrointestinal function should be considered when technically feasible</td>
</tr>
<tr>
<td>Prevention of or treatment of carcinoid crisis
• Octreotide 500 µg s.c. bolus then 50–100 µg/hour i.v. titrated to symptom and blood pressure control</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Symptoms refractory to SSAs
• Telotristat etiprate - awaiting approval
• Interferon alpha 3–5 million units s.c., three times per week
• SSA dose escalation, octreotide LAR up to 60 mg q2-4w or lanreotide up to 180 mg q3w</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Surgery
• Cytoreduction of dominant hepatic disease with preservation of liver parenchyma and both left and right inflow and outflow vascular patency with goal of amelioration of secretory symptoms
• Consideration of cardiology assessment and cardiac valvular surgery for carcinoid heart disease</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Limited disease
• Image-guided ablation (RFA, microwave ablation) alone
• Ablative therapy as an adjunct to surgery
• Hepatic-arterial therapy (bland embolization, chemoembolization or radioembolization)</td>
<td>Extensive disease
• Ablative therapy as an adjunct to surgery
• Hepatic-arterial therapy (bland embolization, chemoembolization or radioembolization)</td>
<td>NA</td>
</tr>
<tr>
<td>Hepatic-directed therapy
• Cytoreduction of hepatic disease with preservation of liver parenchyma and both left and right inflow and outflow vascular patency with goal of significant debulking</td>
<td></td>
<td></td>
</tr>
<tr>
<td>For diarrhea
• Questran
• Lomotil
• Pancreatic enzyme replacement
• Imodium
• Psychosocial support and expert nursing care</td>
<td>For pain, nausea, obstructive symptoms, anorexia-cachexia syndrome, ascites
• Pain control with narcotics
• Anti-nauseants
• Prokinetics (e.g., domperidone, maxeran)
• Proton pump inhibitors or H2 blockers
• Low dose dexamethasone for anorexia-cachexia syndrome
• Diuretics for ascites
• Psychosocial support and expert nursing care</td>
<td></td>
</tr>
<tr>
<td>Abbreviations: NA, not applicable; RFA, radiofrequency ablation; i.m., intramuscular; s.c., subcutaneous; TID, three times daily.</td>
<td></td>
<td>* With careful attention to toxicity management.</td>
</tr>
</tbody>
</table>
single agent SSAs (octreotide LAR 30 mg, i.m. q4w or lanreotide autogel 120 mg, s.c. q4w; Category 1 [C1]) should be considered. For patients with disease progression on SSA therapy, single agent everolimus (10 mg/day) should be considered (C1) and everolimus in combination with SSAs is an additional option (Table 3) [13,14,74,78]. There is currently no level 1 evidence informing an optimal second-line treatment strategy for disease progression on first-line therapy. Use of biologics other than everolimus should be limited to the clinical trial setting (C1; Table 2).

Peptide receptor radionuclide therapy (PRRT)

PRRT has been used for over two decades in the treatment of NETs and next generation PRRT employs 90Y or 177Lu labeled high-affinity SSAs (octreotide or octreotate) and more stable chelators (e.g., DOTA) [79]. The safety and efficacy of PRRT for both secretory and non-secretory GI-NETs is supported by phase I and II data [80–85], while use of 177Lu-DOTA-TATE (177Lu) in mid-gut, SSR-positive NETs is supported by the phase III NETTER-1 trial [15]. This trial compared 177Lu delivered concurrently with standard dose (30 mg) octreotide to high dose (60 mg) octreotide LAR for patients with disease progression on standard dose octreotide. At the time of analysis, both median PFS (not yet reached vs 8.4 months, HR = 0.209; 95% CI: 0.129–0.388; p < 0.0001) and OS (22 vs 13 months; p < 0.0186) were significantly improved for patients on the 177Lu arm (Table 3)[15]. PRRT with 177Lu should be considered in patients with well-differentiated, SSR-positive midgut NETs with Ki-67 index <20% who have progressed on standard dose SSA therapy regardless of secretory status (C1) [15], and is an option for other GI-NETs. If 177Lu is unavailable, use of 90Y-DOTA-octreotide is also an option, although not assessed in the above trial. SSR-positivity should be established based on either 68Ga-DOTA-TATE or 111In pentetreotide imaging. Patients receiving PRRT, particularly 90Y-DOTA-octreotide, are at risk of kidney toxicity and amino-acid protection to reduce toxicity is required (Table 2) [82,83]. The extent to which internal dosimetry can optimize therapeutic PRRT responses while limiting renal and myelotoxicities deserves further evaluation.

Symptom control

Systemic therapy

SSAs represent the first line of therapy in the management of symptomatic secretory NETs. Both short acting sub-cutaneous and long-acting octreotide (LAR) provide significant benefit in control of diarrhea and flushing associated with the carcinoid syndrome [74,86,87]. The phase III placebo-controlled ELECT trial observed a lower mean percent of days of octreotide rescue medication required by patients treated with lanreotide (overall, 34% vs 49%; p = 0.02) [88]. Initial therapy with SSAs, either octreotide LAR 20–30 mg i.m. q4w or lanreotide 120 mg deep s.c. q4w, is therefore an option for patients with symptomatic carcinoid syndrome (Tables 2–4) [74,87]. For patients requiring immediate symptom control, short acting octreotide 150–500 µg s.c. TID should be initiated and continued for two weeks after the first dose of long-acting SSA.

For patients with refractory diarrhea, it is important to consider causes other than tumor progression or refractory disease such as bile salt and/or fat malabsorption, intestinal hypermotility, short bowel syndrome post resection or transient viral illneses. The TEL-ESTAR trial compared different doses of the tyrosine hydroxylase inhibitor telotristat etiprate to placebo in patients with disease-related diarrhea not adequately controlled on SSAs. A significant reduction in frequency of bowel movements favoring the treatment arm was observed (28%, 250 mg TID; 35%, 500 mg TID; p < 0.001 for both doses) [12]. The response to treatment was durable in 44% and 42% of patients receiving telotristat etiprate at doses of 250 mg TID (p = 0.011) and 500 mg TID (p = 0.020), respectively, compared to 20% of those receiving placebo. Telotristat etiprate has not yet been approved for use in Canada. Other options for progressive or refractory symptoms due to carcinoid syndrome include interferon alpha 3–5 million units s.c. 3 times per week, with careful attention to toxicity management [89–91], and SSA dose escalation with octreotide LAR up to 60 mg q2–4w or lanreotide up to 180 mg q3w (Tables 2 and 4) [92,93]. Administration of pancreatic enzymes may be necessary to avoid progressive steatorrhea due to pancreatic insufficiency secondary to SSA dose escalation.

Loco-regional therapy

Patients who remain symptomatic in spite of SSA therapy may be considered for cytoreductive surgery and hepatic directed therapies (Table 4). Cytoreductive surgery should follow the same principles outlined in the Disease Management section of this manuscript (see also Table 2). A recent systematic review and meta-analysis of radiofrequency ablation (RFA) observed symptom improvement following RFA alone or after RFA in combination with surgery. Among patients presenting with symptoms, 92% reported improvement with a median duration of 14–27 months [94].

The role of external beam radiation in the management of patients with metastatic neuroendocrine disease is generally limited to the palliation of symptomatic bone and brain metastases (Table 2). Stereotactic body radiation therapy (SBRT) continues to evolve and may have a future role in local–regional disease management.

Supportive care

Ongoing supportive care complements all therapeutic modalities in the management of GI-NET symptomatologies. Supportive treatments for carcinoid syndrome-related diarrhea may include bile salt sequestrants such as Questran, anti-diarrheal agents, and pancreatic enzyme replacement (Table 4). Management of symptoms due to hepatic bulk or loco-regional disease may include pain control with narcotics, anti-nauseants, prokinetics (e.g., domperidone, maxeran), proton pump inhibitors or H2 blockers and corticosteroids. Psychosocial support and expert nursing care should be provided at all times throughout the disease course and referral to reputable informational websites and/or patient support groups should be encouraged.

Monitoring and Follow-up

Regular clinical, biochemical and radiologic follow-up should be performed throughout the disease course, although optimal timing has not been defined (Table 2) [8].

In cases of curative-intent surgical therapy, consideration should be given to regular surveillance anatomical and functional imaging, depending on which techniques were deemed useful at baseline [8]. For patients with metastatic disease, assessment intervals should be individualized based on patient and disease-related factors, tumor characteristics, therapy, and goals of care. For young patients (<age 40) with hepatic-only disease, MRI may be considered to minimize cumulative radiation exposure. For patients with carcinoid syndrome and who therefore are at risk of developing carcinoid heart disease, annual echocardiography is recommended [8].
Ongoing surveillance for patients undergoing expectant management or active treatment should include cross-sectional anatomical imaging with optimal imaging protocols.

Summary

A multi-disciplinary approach, involving experienced and collaborative health care teams leads to optimal diagnostic, disease management and symptom control strategies for GI-NET patients. Clinical review at disease presentation and at each clinical decision point by multi-disciplinary expert care teams is essential to ensure all potential treatment and supportive care options are considered. The potential benefit of specific therapies change throughout the disease process and an iterative evaluation of options is important for each patient. Keeping abreast of new data and emerging diagnostic and treatment modalities for patients with GI-NETs is important to optimize delivery of state of the art care.

Funding

This work was supported by the Susan Leslie Fund for Neuroendocrine Tumors.

Disclosures

Simron Singh has received research funding, honorarium and acted as a consultant for Novartis, and received honorarium and acted as a consultant for Ipsen. Sylvia Asa serves on the Medical Advisory Board of Leica Aperio. Chris Dey has nothing to disclose. Hagen Kennecke has received research support from Hoffman La Roche, honoraria from Ipsen, Novartis, Amgen, and Celgene, and travel funding from Amgen. Calvin Law has served on advisory boards and received honoraria and from Novartis Oncology, Ipsen Canada and Amgen Canada.

David Laidley has nothing to disclose. Timothy Asmis has received research funding, fellowship funding and has acted as a consultant for Novartis, and has acted as a consultant for Ipsen. David Chan has received honoraria from Ipsen. Shereen Ezzat has received honoraria from Ipsen, Novartis, and Pfizer.

Rachel Goodwin has received consultant honoraria from Novartis and Ipsen. Ozgur Mete has nothing to disclose. Janice Pasiela has nothing to disclose. Juan Rivera has received consulting fees from Novartis, Pfizer and Ipsen. Ralph Wong has received consultant honoraria from Novartis and Ipsen. Eva Segelov has received travel subsidies from Ipsen and sits on Advisory Board for Ipsen Australia.

Daniel Rayson has received meeting honoraria from Novartis and has served as an advisor for Lexicon and Ipsen.

Acknowledgements

We thank Deanna McLeod and Loretta Collins of Kaleidoscope Strategic for research and editorial assistance.

References

[15] Strosberg JR, Wolin E, Chesen B, et al. 177Lu-Dotatate significantly improves the management or active treatment should include cross-sectional anatomical imaging with optimal imaging protocols.

[16] This work was supported by the Susan Leslie Fund for Neuroendocrine Tumors.

